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Abstract—An novel approach to design Reversible PLAs maxi-
mizing the usability of garbage outputs and reducing the number
of ancilla inputs is presented. A brief overview of proposed
fundamental components and the architecture of reversible grid
network for designing AND plane are then presented. Several al-
gorithms have been used to describe the programming interfaces
in context of Reversible PLAs construction. Finally, recent result
on the trade-off between cost factors of standard benchmark
circuits is reviewed.

I. INTRODUCTION

During execution of every single instruction, stuff wastes
kTln(2) joule of energy as converted into heat due to per bit
erase and reload where T is the operating temperature and k is
the Boltzmann constant [1]. Solution of such input energy loss
mechanism after publishing the tremendous approach called
Reversible Computation was introduced by Bennett [2] in
1973. It opens the tunnel of designing robust architecture
of low power consumption where total input energy loss is
zero, supports the behavior of optical computing, quantum
computing, etc. Generic prototype of designing low power pro-
grammable devices [3] has obtained popularity in recent days.
So, the development of reversible PLAs would be another
application that enhances low power computing. Proposed
idea presents the novel architecture of PLAs in reversible
computing by attaching 100% uses of every logical units/gates
propagates all primary inputs to outputs. Proposed architecture
reflects the following ideology:

• Maximize the usability of primary input signals
• Avoiding any type of EX-OR operations in AND plane
• Reduce number of garbage outputs and ancillia inputs

Rest of the paper has been organized as: section II has
described reversible logic and the standards of measuring the
performance of reversible circuits. Section III has presented
the details of proposed gates and demonstrate organizational
placement of logical units (gates) in Reversible PLAs grid.
Section IV has illustrated the corresponding algorithms for
constructing AND and EX-OR planes using reversible {UMG
and UNG} and CNOT gates, respectively. Comparative per-
formance analysis based on benchmark standard circuits has
been showed in section V. Finally, section VI has concluded
this paper with the summary and future directions.

II. BACKGROUND STUDY

A. What is Reversible Gates?

Bidirectional or reversible circuit prevents input loss due to
unique mapping between input and output states. Like classical
computing, any reversible operational unit entity is called n×n
Reversible gate contains:
• n-input lines and n-output lines
• Unique mapping between input and output states
For example, controlled NOT (CNOT), widely known as

Feynman gate [4] is reversible has two inputs (a, b) and two
outputs (p, q) is shown in Fig. 1. Total number of input and
output states are same (i.e. 4) and the mapping between input
and output states is unique or vice versa.

There are many reversible gates have been populated based
on conservative logic [5], universality of reversible circuit
[6], fault tolerant mechanism [7], online testability [8], pro-
grammable devices [9], etc. Several reversible gates are self-
reflexive backs primary input signals by attaching self-copy
and other gates stuck signals need extra circuitry to return in
initial state. In this paper, two new 3×3 reversible gates called
Universal MUX (UMG) and Universal NOR (UNG) are used
to design AND plane of reversible PLAs where UNG is self-
reflexive reversible gate performs basic OR (or universal NOR)
operation and returns primary inputs to output. On the other
hand, UMG also performs AND operation and returns primary
inputs as like UNG but not self-reflexive.

B. Performance Measurement Standards

Operational Competency of any circuit is always related to
its technical design encroachment. In any particular technol-
ogy, greater number of logical units slows down the strength
of signal hampers net processing speed of circuit. But inter-
estingly, logical minimization provides better opportunity to
reduce the number of operational units and total cost.

Fig. 1. Reversible CNOT and unique IO states mapping



1) Total Number of Gates: In reversible circuit, the input
loss is zero in ideal state but bending input signals to output
lines absorbs energy and declines the strength of internal signal
due to have unavoidable resistance. The total number of gates
used in circuit is considered one of the worthy cost factor
controls performance of digital circuit [10].

2) Quantum Cost: Every reversible circuit points unique
singular unitary matrix which can be accomplished with one or
more 2×2 and 4×4 unitary matrices whose are also compatible
to 1×1 and 2×2 basic primitives in Quantum Computing.
Alternatively, the n-dimensional quantum primitive is identi-
cally formed of 2n×2n dimensional unitary matrix. The total
number of 2×2 quantum primitives are used to realize any
reversible circuit is called Quantum Cost [11].

3) Garbage Output and Ancilla Input: Unlike classical
computing, reversible circuit requires extra output lines to map
all input the states uniquely, called garbage output [12]. On
the other hand, one or more input line(s) get saturated in
constant level (i.e. 0 or 1) to perform specific operations is
called Ancilla Input [13].

According to above definitions, the realization of 2-input
EX-OR operation requires only one 2×2 reversible Feynman
gate and the quantum cost of Feynman gate is 1 (single 2×2
quantum XOR gate is able to realize CNOT operation), the
number of garbage output is 1 and finally, the number of
ancilla inputs is zero (shown in Fig. 1).

C. Review on Reversible PLAs

In 2006, author of [14] has proposed the Reversible ar-
chitecture of PLAs that was similar to classical PLA design
[3] where AND plane consists of vertical complement and
non-complement input lines and horizontal products lines
spread over EX-OR plane. Toffoli gates were used to perform
AND operation in AND plane whereas Feynman performed
EX-OR operation in EX-OR plane. Additionally, Feynman
gates were also used in AND plane for avoiding fan-out(s).
The improved design of [14] was proposed in [15] brought
prominent modification in the basic architecture of classical
reversible PLA circuits by using only single line for each input
literal in AND plane. Ref. [15] used MUX and Feynman gates
to realize improved design of reversible PLAs where AND
plane also performed copy operation by using Feynman gates
as the similar way in [14]. Both papers had used multiple
output functions F (i.e. Eqn. 1) as a sample to represent their
proposed designs and minimization methodologies.

D. Motivation of this Research Work

Fundamentally, classical architecture of PLAs [3] was im-
plemented by placing configurable switches at cross-point.
These switches copy input signal multiple times increases
fan-outs (which is restricted in Reversible Computing). The
simplicity of AND, OR and NOT logic has been promoted by
novel researchers to design such architecture of Programmable
Logic Devices (PLD) in classical digital circuit [3]. But in
reversible computing, the operability of basic bidirectional
components is unavoidable when designing logic circuit such
as Reversible Programmable Logic Arrays. In both [14] and
[15], reversible PLAs focused the ideal zero energy dissipation
due to use of large number of CNOT gates to recover fan-out(s)
increases number of ancilla bits and garbage outputs. The idea
of proposed research work comes through the reusability of
garbage outputs as the input to next operational unit(s) that
reduces the number of ancilla input at the same time.

III. PROPOSED REVERSIBLE GATES AND PLA GRID

In this section, two new reversible primitives (Universal
MUX and Universal NOR gates) have been introduced fol-
lowed by the demonstration of logical units placement in AND
plane as well as the ordering principle of products generation.

A. New Reversible Gates and Operational Templates

1) Reversible Universal MUX Gate (UMG): The input and
output vectors of Universal MUX gate can be written as (a, b,
c) and (p= a, q= b⊕c, r= ab⊕a′c), respectively. The equivalent
quantum representation of UMG is shown in Fig. 2.

2) Reversible Universal NOR Gate (UNG): In Boolean
logic, NOR gate is an universal primitives can interpret the
functionalities of all basic gates (AND, OR, NOT). Similarly,
the input and output vectors of proposed 3×3 Universal NOR
gate which perform NOR operation can be written as (a, b, c)
and (p= a, q= b, r= (a+b)⊕c), respectively (shown in Fig. 4).

Proposed UMG and UNG gates are used to perform AND
operation of two literals (or a literal and a product). The forms
of logical unit(s) which are used in proposed reversible PLAs
have been selected based on following facts:
• Best orientation of Input and/or Output line(s)
• Projected output(s)(product/sum) of plane(AND/OR)
UMG performs MUX operation by setting input a as

selection line and others (b and c) as data. Proposed UMG
is able to generate three minterms of two inputs (ab, ab′ and
a′b, are represented through templates α, β and γ (swapping
orientations are α′, β′ and γ′) as shown in Fig. 3. UMG doesn’t
erase the input value of any operational unit while performing
AND operation and those unused outputs can be used as the
primary inputs to another reversible gates. UNG recovers the
limitation of UMG and the operational template is symbolized
using π (π′) (shown in Fig. 5).

Algorithm 1 shows the methodology of selecting template
(oriented form of logical unit) to perform AND operation of
inputs p and q depending on the value of swapFlag. The
statement, swapFlag = 0 indicates to perform AND operation
by using α′, β′ or γ′ (otherwise α, β, γ or π).



Fig. 2. Reversible Universal Multiplexer gate (UMG): (a) Block diagram
of UMG and (b) Quantum realization of UMG; Truth table of UMG maps
uniquely all the input states to output states

Fig. 3. Proposed templates of Universal MUX gate (UMG) are used in
proposed Reversible PLAs design are symbolized through α, β and γ whereas
the swapping templates are α′, β′ and γ′

Algorithm 1: OpAND(p, q, swapFlag)

Templates {α, β, γ, π} (for swapping {α′, β′, γ′, π′}) are
used to AND {p, q} based on the value of swapFlag.
Start
1. If p is a Literal in complemented form Then
2. If q is in complemented form Then
3. If swapFlag = 0 Then use π′ Else use π
4. End If
5. Else
6. If swapFlag = 0 Then use β′ Else use β
7. End If
8. End If
9. Else
10. If q is in complemented form Then
11. If swapFlag = 0 Then use α′ Else use α
12. End If
13. Else
14. If swapFlag = 0 Then use γ′ Else use γ
15. End If
16. End If
17. End If
18. Return p.q
End

On the other hand, proposed EX-OR plane consists of only
Feynman gates are used to perform XORing products. Three

Fig. 4. Reversible Universal NOR gate (UNG): (a) Block diagram of UNG
and (b) Quantum cost is 5; UNG maps input and output states uniquely

Fig. 5. Templates of UNG are used to generate product (a′b′)

templates of Feynman gates have been used in proposed design
are symbolized through symbols 4, λ and ∇ perform NOT
{a, a′}, EX-OR {a, (a ⊕ b)} and COPY operation {a, a},
respectively (shown in Fig. 6).

B. Reversible PLAs Grid and Primitives Placement

Reversible gates are more powerful performs multiple logic
operations in single cycle [10]. The orientation of input and
product lines of proposed AND plane is pointed through solid
lines (shown in Fig. 7a) where dotted lines indicate another
pathway to swap input signals (shown in Fig. 7b) according
to following algorithm (Algorithm 2).

Algorithm 2: SwapLiterals(Li, Lj)

Exchanging Input signals {Ii, Ij} in lines, {Li, Lj}.
Start
1. Set a:= signal at input line, Li

2. Set b:= signal at input line, Lj

3. Li:= b and Lj := a
End

Basically, swap operation of two literals be performed when
the uses of any literal got ended for doing AND operation in
AND plane. SwapLiteral(Li, Lj) moves unused literals from
left to right vertical tracks of AND Plane. Performing AND
operation at any cross-point of two vertical lines binds single
horizontal line to generate cumulative product and again,
connecting another literals to cumulative product (if needed)
to generate final product of AND plane.

Fig. 6. Templates of CNOT gate are used to design EX-OR plane



Fig. 7. Reversible PLAs Grid Architecture of AND plane: (a) Primary
inputs and generated products be passed through vertical and horizontal lines,
respectively and (b) Swapping input signals

Ordering products takes crucial role reduces the cost of
products generation by using garbage output(s). Also, the
usability of different templates provides mining opportunities
optimizing the cost in physical layer. Resultant products con-
tain same number of literals placed according to the order of
input literals. For example, products (Pv) consist of literals {a,
b and c} be produced in order, product(s) start with a followed
by start with b followed by start with c. Algorithm 3 describes
the methodology of placing products based on their useability.
For example, product abcd be generated before abc, abd or
ab which are consisted of less number of literals.

Algorithm 3: OrderingProducts(Iv , Pv)
Products, Pv be ordered according to inputs, Iv .

Start
1. Set PQ:= φ [PQ is used to store products]
2. Sort Pv based on SizeOf(Pi) in descending order
3. For i= 1 to totalLiterals
4. For j= 1 to totalProducts
5. If Ii ∈ Pj and Pj /∈ PQ Then Add Pj to PQ

6. End If
7. End Loop
8. End Loop
9. Set Pv := PQ

End

According to above algorithm (ALG. 3), the order of
products consists of inputs a, b, c, d and e (only the non-
complemented forms) can be graphed as shown in Fig. 8.

IV. PROPOSED DESIGN OF AND AND OR PLANES

In this section, proposed design of AND plane based has
been described followed by the realization of EX-OR plane.

A. Designing Reversible AND and EX-OR Planes

AND plane dominates the performance and cost factors of
reversible PLAs where every AND operation rises all cost
factors compared to simple of EX-OR operation. Algorithm
4 presents the construction of proposed AND plane as well
as the minimization of garbage outputs. The construction of

Fig. 8. The order of products consist of literals (a, b, c, d, e) is: {[abcde,
abce, abde, abe], [abcd],[abc, abd], [ab], [acde, ace], [acd], [ac], [ade], [ad],
[ae], [bcde, bce], [bcd], [bc], [bde], [bd], [be], [cde], [cd], [ce], [de]}. Products
in the same group (for example [abcde, abce, abde, abe]) are independent can
be generated in any order.

AND plane includes, the ordering of products (Algorithm 3)
followed by counting swapFlag and then invokes OpAND(p,
q, swapFlag) (Algorithm 1). Input lines exchange signals (as
Algorithm 2) after finishing the generation of all mutual prod-
uct(s). Finally, Queue (PQG) stores unused garbage products
which are used in afterward as resultant products when they
get similar to unexplored products.

Algorithm 4: ConstuctANDPlane(Iv , Pv)
This function constructs AND plane by taking set of input

literals (Iv) and generates products (Pv) connecting multiple
input lines (Lv) by using UMG and UNG gates.
Start
1. OrderingProducts (Iv , Pv)
2. Set PQG:= φ and ndot:= 0 [PQG stores garbage]
3. For g = 1 to totalLiterals - 1
4. For h = g + 1 to totalLiterals
5. Set swapFlag:= 0
6. For i = 1 to totalProducts
7. If IgIh ∈ Pi Then swapFlag:= swapFlag + 1
9. End If
10. End Loop
11. If swapFlag > 0 Then
12. For i = 1 to totalProducts
13. If SizeOf(Pi) > 1 Then
14. If Pi ∈ PQG Then Remove Pi from PQG

15. Else
16. If IgIh ∈ Pi Then swapFlag:= swapFlag - 1
17. Set pivotP:= OpAND(Ig , Ih, swapFlag)
18. If SizeOf(Pi) > 2 Then
19. For j = h + 1 to totalLiterals
20. If Ij ∈ Pi Then
21. Set Pg:= pivotP
22. pivotP:= OpAND(pivotP, Ij , false)
23. End If
24. End Loop



25. Add Pg to PQG [Add new garbage to PQG]
26. End If
27. End If
28. End If
29. Else ndot:= ndot + 1 [Use via (•)]
30. End If
31. End Loop
32. Else SwapLiterals(Lg , Lh); [No mutual products]
33. End If
34. End Loop
35. End Loop
End

Theorem 1. Let, n be the number of AND operations of m
output functions and t be the number of AND operation of
garbage outputs, (PQG) which are identical to any products
then the minimum number of reversible gates to realize AND
plane is (n-t), the quantum cost is 5(n-t), the number of ancilla
input is (n-t).

Proof: As performing every reversible AND operation
needs single UMG or UNG gate, results total number of gates
to realize AND plane is n. But reusability of garbage reduces
the number of acting AND operations is to (n-t). Similarly,
the quantum cost of UMG or UNG is 5 sums-up the total
quantum cost of circuit is 5(n-t) and every reversible AND
operation requires an ancilla bit summarizes total number of
ancilla inputs to (n-t).

For multi-output function F in Eqn. (I), total number of
AND operations (n) is 7, the number of AND operation(s)
in garbage which are similar to any product (t) is 1. So, the
number of gates= (n-t)= 7-1= 6, quantum cost= 30 and total
ancilla input= 6 (shown in Fig. 9).

Theorem 2. Let, p be the number of products (consist of more
than two literals) of m output functions, q be the number of
garbage outputs which are identical to any products and ndot
be the number of cross-point then the number of garbage is
p+totalLiterals-ndot-q.

Fig. 9. Optimized version of reversible PLAs of multi-output function F in
Equation(I)

Algorithm 5 describes the construction of EX-OR plane by
using Feynman gates where (λ) connects product lines (Pi) to
corresponding function lines (Fj) produces output signals and
another identical copy of Pi.

Algorithm 5: ConstructXORplane(Pv , Fv)

EX-OR plane generates the final outputs of multi-output
function, (Fv) consists of products, Pv .
Start
1. Set FQ:= φ and xdot:= 0
2. For i= 1 to totalProducts
3. For j= 1 to totalFunctions
4. If Pi ∈ Fj Then
5. If Fi /∈ FQ Then
6. If FreqOf(Pi) == 1 Then
7. xdot:= xdot + 1 [use via (•)]
8. Else
9. Use ∇ [Keep a copy of Pi]
10. Set FreqOf(Pi):= FreqOf(Pi) - 1
11. End If Add Fi to FQ

12. Else Use λ [XORing Pi to Fj Line]
13. End If
14. Else If Pi

′ ∈ Fj Then
15. Use 4 [Keep a copy of Pi]
16. End If
17. End Loop
18. End Loop
End

Theorem 3. Let, n be the number of EX-OR operations of
m output functions and xdot be the number of cross-points,
then the minimum number of Feynman gates to realize EX-
OR plane is n+m-xdot, the quantum cost is n+m-xdot, total
number of ancilla input is m-xdot.

According to proposed algorithms (ALG. 4 & 5), the con-
struction of multi-output function F in Equation (I) is shown
in Fig. 9 where garbage outputs are represented by using line
ends with box. Table I summarizes that the proposed design of
reversible PLAs requires less number of gates, garbage outputs
and ancilla inputs as well as minimum quantum cost compare
to existing design [15].

V. PERFORMANCE ANALYSIS

The realization of benchmark circuits analysis based on
proposed algorithms by using programming language Java
(jdk 1.7) on Netbeans IDE (8.0) in Window 7 Workstation is
presented in Table II. All the experiment result are tested on
Intel(R) Core(TM)i3 CPU@3.30GHz with 2GB RAM. Table
II shows the experimental results for different benchmark
functions and the comparison with the existing method [15]
where the required number of gates, garbage outputs and
ancilla inputs are minimized in notable manner. Finally, the
trade-off between quantum cost and other factors summarizes
the better optimization of proposed design of reversible PLAs
is presented.



TABLE I
COMPARISON BETWEEN THE PROPOSED AND EXISTING [15] DESIGNS OF

MULTI-OUTPUT FUNCTION F IN EQUATIONS (I)

RPLAs Total Garbage Ancilla Quantum
Design Gates (GA) (GB) Input(AI) Cost(QC)

Proposed 13 5 7 37
Existing[15] 18 10 12 39

VI. SUMMARY AND FUTURE DIRECTIONS

In proposed design, the reusability of garbage outputs
enhances zero energy dissipation which is the prime concern
of reversible computing has been followed. This research has
directed an novel approach to design reversible PLAs by
proposing reversible PLAs grid and algorithms to construct
AND and EX-OR planes. In the future, the success of re-
versible PLAs will raise the development of Reversible Field
Programmable Logic Arrays [9].
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